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1 I n t r o d u c t i o n

Random fluctuations of an electromagnetic field are the object
of the theory of coherence [1].

In the analysis of imaging systems, the spatial-coherence state
of the light source plays an important role; in fact, the degree
of spatial coherence of the illuminating source strongly af-
fects the image quality, and numerous criteria, such as spatial-
frequency cut-off, two-point resolution, speckle phenomenon,
and the diffraction effect at a screen edge, can be used to com-
pare image properties [2]. The ability to asses the state of co-
herence of an illuminating beam is therefore of great impor-
tance.

Perhaps, the earliest works on the theory of partial coherence
for the propagation in periodic structures have been the study
of the effect of multireflections occurring in optical cavities by
E. Wolf [3] and W. Streifer [4].

More recently some attempts have been made to construct a
theory of partial coherence for wave propagation in periodic
media such as photonic crystals [5]. In the present paper we
wish to analyze a 2D-structure which shows a transmission
that may be strongly influenced by the spatial coherence prop-
erties of a monochromatic beams, so providing a simple tool to
give a rough measure of the coherence properties of the beam.

2 C O H E R E N C E T H R O U G H A T W O -
D I M E N T I O N A L G R A T I N G S Y S -
T E M

We wish to analyze the coherence properties of a 2D structure
including a diffractive element such as a grating. The response
of such geometry is strongly influenced by the wavelength of
the radiation and therefore it is convenient to speak in spectral
terms adopting the concept of spectral visibility and spectral
correlations developed by Mandel and Wolf already in 1976
[6, 7]. The spectral visibility ϑ(r, ω) at a given point P(r) is
defined as

ϑ(r, ω) =
W(r, ω)max −W(r, ω)min

W(r, ω)max + W(r, ω)min
(1)

where W(r, ω) is the spectral density at the frequency ν. For
a white source of continuous spectral density in a sufficient
small interval of frequency δν, one may assume

W(r, ω) = Wω = cos t (2)

and

Iω =
ω+δω∫

ω

W(ω′)dω′ = Wωδω (3)

The spectral visibility is then

ϑω(r) =
Iω(r)max − Iω(r)min

Iω(r)max + Iω(r)min
(4)

To start with, let us consider the most intriguing part of our
studied structure made by a grating with a period d along

Received June 8, 2006; published June 14, 2006 ISSN 1990-2573



Journal of the European Optical Society - Rapid Publications 1, 06005 (2006) A. Mandatori,et. al.

the x-direction on which a plane monochromatic wave prop-
agating along z and polarized linearly with the electric field
vibrating along y (see Figure 1) is impinging. A number of
plane waves comes out from the grating (in the figure three
waves are shown) with different propagation directions. The
outcoming field can be written as
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FIG. 1 Representation of a simple 2D grating system with one input plane wave in and

three plane waves in output.

Eω(x, z) =
∞

∑
n=−∞

Tne−i(knx x+knzz) , (5)

where Tn are complex coefficients determined by the bound-
ary conditions of the problem

knz =
√

n2
0k2

0 − k2
nx

knx = n 2π
d + nik0 sin ϕi = nkd + kx0

(6)

n0 is the external output medium refractive index, k0 is the
wave-number in vacuum, ni is the input refractive index, n is
an integer number n = 0,±1,±2, . . . and ϕi is the incoming
angle. If the input field is incident normally, the incoming an-
gle ϕi is zero and to have homogeneous plane waves in trans-
mission one must have

n2
0k2

0 − k2
nx ≥ 0 . (7)

Therefore the nth order diffracted wave will propagate in the
output semispace only if

n ≤ n0
d
λ

. (8)

If the output medium has a refractive index n0 and only 2n + 1
orders are wanted, then

n ≤ n0
d
λ

< n + 1 (9)

In the observation plane at some distance z0 from the 2D sys-
tem, the output field is made by the sum of a finite number of
plane waves which interfere with each other. The calculation
of the total field in the case of fully coherent waves is quite
easy. To consider more complex cases let us start from the

spatial frequency integral representation of the output field
so that the output field Eu(x) can be written as the inverse
Fourier transform on the plane z

Eout (x) =
∫ N

∑
n=−N

Tn (kx)×

e
−i

[
(n kd+kx)x+

√
n2

0 k2
0−(n kd+kx)2z

]
Ei (kx) dkx (10)

or in a more compact way

Eout (x) =
∫

T (kx, x) Ei (kx) e−ikx xdkx (11)

where

T(kx, x) =
N

∑
n=−N

Tn(kx) e
−i

[
nkdx+

√
n2

0k2
0−(nkd+kx)2z

]
. (12)

We are now in the position to obtain the mutual coherence
function for the field at frequency ν

Γ(ω)
out (x1, x2) = < Eout (x1) Eout (x2)

∗ >=

=<
∫

T (kx1, x1) Ei (kx1) e−ikx1x1 dkx1 ×∫
T (kx2, x2)

∗ Ei (kx2)
∗ eikx2x2 dkx2 > (13)

which can be written as

Γ(ω)
out (x1, x2) =

∫∫
Γ(ω)

i (kx1, kx2)×

T (kx1, x1) T (kx2, x2)
∗ e−ikx1x1 eikx2x2 dkx1dkx2 (14)

where
Γ(ω)

i (kx1, kx2) = < Ei(kx1)E∗i (kx2) > (15)

is the spatial cross-spectral function of the incident field of
pulsation ω. If the two points x1 and x2 coincide, x1 = x2 = x,
then Γ(ω)

out (x, x) is the output intensity and we have

Iω (x) =
∫∫

Γ(ω)
i (kx1, kx2) T (kx1, x) T (kx2, x)∗×

e−i(kx1−kx2)xdkx1dkx2. (16)

If we assume that the input plane wave is a stationary pro-
cess that depends on the two spatial variables only through
their difference x′′ − x′ = δ, Γ is a function of the difference
between the points x′ and x′′ only and we may write for

< Ei (kx1) Ei (kx2)
∗ >=

∫∫
< Ei

(
x′

)
Ei

(
x′′

)∗
> ×

eikx1x′ e−ikx2x′′dx′dx′′ (17)

the expression

< Ei (kx1) Ei (kx2)
∗ > = Γ(ω)

i (kx1) δ (kx1 − kx2) (18)

and substituting Eq(18) in Eqs.(15) and (16) we obtain

Iω (x) =
∫

Γ(ω)
i (kx1) |T (kx1, x)|2 dkx1. (19)

The calculation of Eq.(19) requires the knowledge of Tn(kx).
The simplest way to operate is by numerical integration. To
improve the speed of calculation of the integral, a database
has been created with a number of values of Tn(kx) for dif-
ferent kx values and given polarization (TE or TM). From the
database by interpolation all the points of Tn(kx) are derived
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and are used to perform the integral Eq.(19) for any position
z0 and any correlation function Γi.

A simple example may be considered by assuming to have an
input wave with a Gaussian correlation function

Γ(ω)
i (x) = e−x2/2σ2

e−ikx0x (20)

where kx0 has been defined in Eq.(6). The Fourier transform
can be written as

Γ(ω)
i (kx) = A σ e−

1
2 σ2(kx−kx0)

2
(21)

being σ (with the dimension of a length), a measure of the
spatial coherence of the wave. For values of σ >> λ, being λ

the input wavelength Γi(kx) is well approximated by a Dirac
δ function and Eq.(19) can be written as

I(x) = Γ(ω)
i (kx0) |T(kx0, x)|2 . (22)

Except for a multiplicative constant, Eq.(22) is exactly the in-
tensity distribution on the plane z (z is implicit in the func-
tion T) of a fully spatially coherent field. We have important
effects due to partial coherence only if the function Γi(kx) is
wide enough not to be approximated by a Dirac δ function. In
this case, we have a combined effect due to the partial coher-
ence of the incoming field and the geometrical properties of
the system. If σ >> λ, the geometrical parameters of the 2D
structure are not so important. Consider however Eq.(19) and
write down the general form of T as in Eq.(12)

T (kx, x) =
N

∑
n=−N

Tn (kx) e
−i

[
n kdx+

√
n2

0 k2
0−(n kd+kx)2z

]
. (23)

We have to consider that in the sum Eq.(23) the terms Tn(kx)
are constant with respect to the spatial coordinates x and z.
They are produced only by the angular spectral properties of
the 2D structure. The exponential term is the propagator for
the single plane waves that from the 2D system propagate till
the z plane, and it may produce changes in T(kx, x)as the ob-
servation plane distance z is changed.

In Figure 1 (where for simplicity only three waves are con-
sidered of the 2N + 1 ones in output) we consider two z
planes where to calculate the intensity by Eq.(19). The prop-
agator for the n-plane wave in output is written as Kn =

e
−i

[
n kdx+

√
n2

0 k2
0−(n kd+kx)2z

]
. It is evident that for some range of

kx values the number of turns of the vector Kn on the complex
plane (and therefore the number of the phase cycles) is greater
as the z plane is moved far apart. This means that Eq.(23), that
gives the form of the interference fringes on the z plane in the
case of a completely coherent field Eq.(19), is more sensible to
kx as the z plane moves farthest away. In particular, the fringes
tend to disappear by increasing z. In Figure 1 the interference
fringes will be more visible on the plane z1 than on z2. The
calculation shows that the visibility of fringes depends on the
ratio z/σ. For z < 3σ the fringes are still visible, for z > 3σ the
visibility tends to zero. This is a characteristic linked to the
mathematical and physical properties of the propagator Kn,
more than to the geometrical characteristics of the 2D system.

3 A N A L Y S I S O F T H E S P A T I A L
A N D T E M P O R A L C O H E R E N C E
O N A G R A T I N G

Taking into account Figure 1, we proceed to analyze the gen-
eral case of a space and time partially coherent input plane
wave on a 2D system made by a grating with period d. We
begin from the integral representation in terms of spatial and
temporal frequencies of the output field on the generic z plane.

Eout (x, t) =
∫∫ N

∑
n=−N

Tn (kx, ω) e
−i

[
nkdx+

√
n2

0k2
0−(nkd+kx)2z

]
×

Ei (kx, ω) e−ikx xeiωtdkxdω (24)

or using Eq.(12)

Eout (x, t) =
∫∫

T (kx, ω, x) Ei (kx, ω) e−ikx xeiωtdkxdω. (25)

We now proceed to derive the mutual coherence function

Γout (x1, x2; t1, t2) = < Eout (x1, t1) Eout (x2, t2)
∗ > =∫∫

T (kx1 , ω1, x1) Ei (kx1 , ω1) e−ikx1 x1 eiω1t1 dkx1 dω1 ×∫∫
T (kx2 , ω2, x2)

∗ Ei (kx2 , ω2)
∗ eikx2 x2 e−iω2t2 dkx2 dω2 (26)

that can be written as

< Eout (x1, t1) Eout (x2, t2)
∗ >=∫∫ ∫∫

< Ei (kx1 , ω1) Ei (kx2 , ω2)
∗ > ×

T (kx1 , ω1, x1) T (kx2 , ω2, x2)
∗ ×

e−ikx1 x1 eikx2 x2 eiω1t1 e−iω2t2 dkx1 dkx2 dω1dω2 (27)

or in a more compact way

Γout (x1, x2, t1, t2) =∫∫ ∫∫
Γi (kx1 , kx2 , ω1, ω2) T (kx1 , ω1, x1) T (kx2 , ω2, x2)

∗ ×

e−ikx1 x1 eikx2 x2 eiω1t1 e−iω2t2 dkx1 dkx2 dω1dω2. (28)

To derive the spectral correlation function Γi in spatial and
temporal frequencies we can proceed as for Eqs.(17), (18) ob-
taining

Γi (kx1 , kx2 , ω1, ω2) =< Ei (kx1 , ω1) Ei (kx2 , ω2)
∗ >=

Γi (kx1 , ω1) δ (kx1 − kx2) δ (ω1 −ω2) . (29)

Replacing Eq.(29) inside Eq.(28) we have

Γout (x1, x2, t1, t2) =
∫∫

Γi (kx1 , ω1) T (kx1 , ω1, x1)×

T (kx1 , ω1, x2)
∗ e−ikx1 (x1−x2)eiω1(t1−t2)dkx1 dω1. (30)

That in the case of fully spatial coherent field in input becomes

Γout (x1, x2, t1, t2) =
∫

Γi (ω1) T (ω1, x1)×

T (ω1, x2)
∗ eiω1(t1−t2)dω1 (31)

while for a fully time coherent field we have

Γout (x1, x2, t1, t2) = Γout (x1, x2) =∫
Γi (kx1) T (kx1 , x1) T (kx1 , x2)

∗ e−ikx1 (x1−x2)dkx1 . (32)
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In the case of a plane wave with central pulsation ω0, sta-
tionary Gaussian coherent function in space and stationary
Lorentzian coherent function in time, the correlation function
is written as (we define x = x1 − x2, τ = t1 − t2)

Γi (x, τ) = e
− x2

2σ2
x e−

|τ|
σt e−ikx0 xeiω0τ (33)

where σx and σt are related to the space coherence and
linewidth of the pulse. The Fourier transform in space and in
time (except for a constant factor) is

Γi (kx1 , ω1) =
2e−

1
2 σ2

x(kx1−kx0)
2

σt

[
(ω −ω0)

2 + 1
σ2

t

] . (34)

Considering Eq.(30), the output intensity for a partial coherent
input field is

I (x) =
∫∫

Γi (kx1 , ω1) |T (kx1 , ω1, x)|2 dkx1 dω1 (35)

with Γi given by Eq.(34).

4 A N E X A M P L E ; A P H O T O N I C
C R Y S T A L W I T H A G R A T I N G A S
A D E F E C T

We now consider a more complex 2D structure made by alter-
nating a number of layers of different refractive index, with a
simple grating at the centre.
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FIG. 2 Representation of a grating between two multilayers at λ0/4.

The general structure is shown in Figure 2. The structure may
be represented in a symbolic way as AB(2D)BA with obvious
meanings of the symbols. The simulations that are reported
below have used for the different parameters the following
values: nA = 2.5, nB = 1.5; all the thicknesses of the 1D-layers
are chosen to have optical path λ0/4 where λ0 = 0.6µm. The
grating represents a defect in the middle of the 1D-layers and
its thickness is ag = 0.25µm. The period d has been chosen
d = aλ0 with a = 1.8; with this choice of d and λ0 it is clear
that only three plane waves are present in the output, as it is
schematized in Figure 2. The period d includes two regions of
refractive index nA and nB of equal extension.

Figure 3 shows the transmission spectrum T: in Figures 3(a),
3(b) and 3(c) are shown for normal incidence the transmission

spectra in (a) for the diffracted zero order only, in (b) for the -1
and +1 orders (in case of normal incidence these two spectra
are equal), in (c) the average power that can be measured on
a generic output plane (obviously the average power is equal
to |T−1|2 + |T0|2 + |T+1|2).
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FIG. 3 Transmissions for the system AB(2D)BA of Figure 2. (a) transmission spec-

trum of zero order for normal incidence; (b) transmission spectrum of -1 and +1 orders

for normal incidence (for normal incidence they are the same); (c) average transmis-

sion power at the output plane for normal incidence; (d) average transmission power

at the output plane for different angles of incidence (kx = kx(φi), where kx is the

x-component of the wave vector k0), in this last case the wavelength is fixed at

λ = 0.6µm.

In Figure 3(d) the transmission is given as a function of the
wave vector kx forλ = 0.6µm. For the sake of simplicity, we
will limit our considerations and calculations to the case of a
monochromatic wave in the pass band of the structure.
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FIG. 4 Square modulus of transmitted electric field at several z planes, the dashed

curves refer to a completely coherent input plane wave, the solid lines refer to a

partially coherent input plane wave, with σ = 1000µm.
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Figures 4 show the interference fringes obtained on a plane
at four different distances z. In each figure two curves are
shown: the dashed one shows the case of a fully coherent field
(σ = ∞), the solid one shows the fringes for a partially coher-
ent field with σ = 1000µm.

Simple inspection shows that by increasing the distance z the
fringe contrast for the partially coherent field decreases be-
coming eventually zero at great distance, while the full coher-
ent field gives fringes at any distance.

z /σ
3

0

0.5

1

Visibility at σ=10µm(a)

0 21

Visibility 

σ=100µm

σ=1000µm

σ=∞(dashed)

0 1 2 3 4
0

0.5

1

(b)

z /σ

(solid)
(o)

FIG. 5 Visibility curves for different values of σ as a function of z. (a) The dashed-curve

refers to a completely coherent input plane wave, the solid-curve refers to a partially

input plane wave with σ = 10µm. (b) Visibility average for different values of σ. Solid

line σ = 100µm, (◦) σ = 1000µm, dashed line σ = ∞. The system is AB(2D)BA.

Visibility curves following the definition of Eq.(4) are shown
in Figures 5 for the three different cases σ = 10, 100 or 1000µm.
For comparison the visibility for a fully coherent field is also
shown. As we can see, for all cases the visibility of the fringes
due to a partial coherent plane wave (solid line) decreases to
zero after some σ steps, while for a complete coherent plane
wave the visibility (dashed line) keeps a high value for the en-
tire range. Figure 5(a) shows that the visibility has small fluc-
tuations as a function of z/σ. These fluctuations have been
smeared out in Figure 5(b), because they are very fast when σ

increases.

1
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FIG. 6 Visibility curves for different values of σ as a function of z. The dashed line

refers to a completely coherent input plane wave, the solid line refers to a partially

input plane wave with σ = 10µm, (◦) is for σ = 100µm, (�) is for σ = 1000µm.

(a) The system is ABAB(2D)BABA; (b) the system is ABABAB(2D)BABABA;

(c) the system is ABABABAB(2D)BABABABA;

We now can see what happens if we change some param-
eters in the structure of Figure 2. The first case is obtained
by the addition of some pairs of 1D-layers, obtaining struc-
tures more selective on wavelength. We represent these sys-
tems with symbolic notation as: (a) ABAB(2D)BABA, (b)
ABABAB(2D)BABABA, (c) ABABABAB(2D)BABABABA.
For all the three cases the physical dimensions are the same
of Figure 2. The visibility curves for the cases (a), (b), (c) are
shown in Figures 6(a), 6(b), 6(c) respectively, they are obtained
for three values of σ (σ = 10µm, σ = 100µm, σ = 1000µm). The
visibility for a fully coherent wave is also shown on the three
figures as a dashed line, and it remains constant as a function
of z/σ.

A second situation we will treat is the one in which we change
the thickness of the grating keeping all others physical pa-
rameters of the system as shown in Figure 2. The number
of 1D-layers is four at each of the two sides of the grating.
With symbolic notation the system is ABAB(2D)BABA. We
choose two cases where the thickness is: (a) ag = 0.05µm and
(b) ag = 0.45µm. These cases have to be compared with the
first one (ag = 0.25µm) treated in Figure 6(a). The visibility
curves for the cases (a) and (b) are shown in Figures 7(a), 7(b)
respectively. Here too, they are obtained for three values of σ

(σ = 10µm, σ = 100µm, σ = 1000µm), and visibility for a fully
coherent field is shown (dashed line).

A third very interesting situation arises if the period d of the
grating is changed. We have seen that, if d is larger than λ,
more orders of diffraction are present. It means that more
beams interfere in the final output plane and we may expect
to have very complex fringes. This is indeed what happens.
We have simulated a geometry as in Figure 2 with λ0 = 0.4µm
and d = aλ0 with a = 12.5µm. The thicknesses of the layers
are as usual λ0/4, and the grating has an arbitrary thickness
of 0.25 µm. The other parameters are unchanged.

0 1 2 4 5 6 7
0

0.5

1

3
z/σ

Visibility 
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σ=100µm

σ=1000µm

σ=∞(dashed)

(solid)
(o)
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(a)
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σ=∞(dashed)

(solid)
(o)

(□)

(b)

z/σ

FIG. 7 Visibility curves for different values of σ as a function of z. The dashed line

refers to a completely coherent input plane wave, the solid line refers to a partially

input plane wave with σ = 10µm, (◦) is for σ = 100µm, (�) is for σ = 1000µm. (a)

The system is ABAB(2D)BABA, with the thickness of the 2D defect a = 0.005µm;

(b) the system is ABAB(2D)BABA, with ag = 0.45µm.
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FIG. 8 Fringes as a function of normalized distance z/σ for d = 12.5 x 1.4 µm and σ =

10µm. The dashed curves refer to a fully coherent beam.

The obtained fringes are shown in Figures 8 assuming a co-
herence dimension of the incoming beam σ = 10µm. Again
in each graph the fringes produced by a fully coherent beam
are also drawn. As expected the fringes have a rather complex
distribution, but also in this case at some distance z the fringes
of the partially coherent source disappear (Figure 8(d)). It may
be observed that, by increasing the period d of the grating, the
distance at which fringes disappear is still linked to σ, but it is
not a few times σ, but larger. The exact functional dependence
of z on σ has however not been determined, and should be
explored in a next paper.

A final example is shown in Figures 9 which have been ob-
tained for the geometry of Figure 2 with d = 2.0µm, λ0 =
0.532µm, nA = TiO2, nB = SiO2, and σ = 1mm. Also in this
case the general behavior is confirmed with the validity of the
comments already done to Figures 8. The visibility is shown in
Figure 10 where the fluctuations have not been smeared out.
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FIG. 9 Fringes as a function of normalized distance z/σ for d = 2.0µm, σ = 0.532µm.

The dashed curves refer to a fully coherent beam.
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FIG. 10 Visibility for the case of Figure 9. σ = 1mm, as a function of normalized

distance z/σ. The dashed curve refers to the case of a fully coherent beam.

5 C O N C L U S I O N S

A photonic crystal with a grating as a defect may be strongly
sensitive to the coherence of the incoming beam. The simula-
tions that have been done show that the position of the inten-
sity maxima changes as a function of z as it may be expected
and the fringe visibility is always small because the three in-
terfering plane waves have not optimized amplitude. There-
fore even in the fully coherent case the distribution of inten-
sity outside the structure exhibits fringes of low visibility that
changes as a function of z in a no oscillating way. The mean
fringe visibility of the partially coherent source is however al-
ways lower than for the fully coherent source and eventually
goes to zero for values of z >> σ. Figures 6 and 7 show that, in
the case of partially coherent fields, the behaviour of visibility
depends on the ratio z/σ rather than simply on z. This means
that for larger coherence dimensions of the incoming beam,
fringes are observed in the image after the filter for propor-
tionally higher distances.

This behavior could find application for a very simple and
rapid inspection of the spatial coherence and temporal coher-
ence properties of a source. Observing the intensity distribu-
tion on a plane moving far away from the structure, at some
distance of the order of some times σ, fringes should disap-
pear.

This method is stable and fast to find the coherence degree of
a beam because we need only to put the filter in front of the
beam and detect the output field at several distance. The dis-
tance at which the fringes disappear is a rough measure of σ.
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