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Talbot’s bands can be observed in one of the diffraction orders of a grating spectrometer with a partially phase-shifted input beam. This
experiment has long been considered as a curiosity. Here, we look at it from a new perspective: we discuss the Talbot band experiment
as a combination of two kinds of dispersion, refractive and diffractive. This may be of interest for various tasks of temporal optical
signal processing such as dispersion management and the shaping of ps/fs-pulses. For this purpose, we demonstrate the use of micro
machined optical elements to alter the performance of the classical Talbot band setup. A theoretical description and experimental results
are presented. [DOI: 10.2971/jeos.2006.06001]
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1 I n t r o d u c t i o n

H. F. Talbot is widely recognised for his work on the self-
imaging effect published in 1836 [1]. On the other hand, an-
other experiment described by Talbot in 1837 [2] on the forma-
tion of interference fringes in white light has gained relatively
little attention so far. In that experiment, Talbot observed the
formation of interference fringes (”Talbot bands”) in one of the
two first diffraction orders of a grating spectrometer upon in-
serting a piece of glass of appropriate thickness halfway into
the illuminating beam Figure 1. This observation is somewhat
surprising, in particular, the fact that the bands occur only in
the +1st order (notation as defined in the figure) and not in the
-1st order. Fringes are shown in Figure 1.

FIG. 1 Classical experiment for the observation of the Talbot bands (“experiment 1”).

Setup: a diffraction grating G is illuminated by a collimated beam of white light from

source S. A glass plate GP is inserted half-way into the illuminating beam. In the

output plane O of the grating spectrometer bands are observed only in the +1st order.

FIG. 2 Observed fringe pattern. Fringe contrast and spacing vary with the wavelength.

The reduced brightness between red and green is due to the colour characteristic of

the CCD camera. Here, d=100 µm and p=20 µm.

The occurrence of the intereference fringes in the +1st order
can be explained qualitatively in the temporal domain. For
this, it is suitable to view broadband light as consisting of
short pulses. For our brief review of the experiment, we will
follow the description presented by Lohmann [3], however,
we would like to mention two other articles by Parker Givens
[4] and by Benkö, Hilbert and Bor [5].

We assume that the aperture diameter of the setup shown in
Figures 1 and 2 is W = Np where p is the period of the grat-
ing and N is the number of periods in the grating. Further-
more, we assume that the glass plate covers half of the aper-
ture. Intuitively, it is clear that the experimental observation
described in Section 1, Figures 1 and 2, is caused by the asym-
metry between the optical paths in the +1st and the -1st order.
To understand this, we look at three snapshots taken at three
different times t1, t2 and t3 and consider two pulses: one trav-
elling through the upper half of the aperture, i.e., through the
glass plate, one travelling through the lower half Figure 3. At
t = t1, the two pulses are located at the same longitudinal po-
sition just before the glass plate. A short time later, at t = t2 the
upper pulse has passed through the glass plate. It now trails
the beam in the lower half which has travelled through air.
The optical path length difference is ∆nl. Here, ∆n = n − 1 is
the index difference between glass and air as a function of the
temporal frequency, d is the thickness of the glass plate. We
denote the temporal delay between the lower and the upper
beam as

tr =
Dnd

c
(1)
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FIG. 3 Three "snapshots" taken at different times for a. the +1st order and b. the -1st

order. At t = t1 both incoming pulses are at the same z-position. At t = t2, the

lower pulse is delayed relative to the first by a distance (n − 1)d, where d is the

thickness of the glass plate. t = t3: for a. the detour due to grating diffraction is such

that the lower pulse is delayed relative to the lower pulse so that both pulses are

(approximately) in phase again. In the -1st order b. the detour leads to a further delay

of the upper pulse relative to the lower pulse, so that both do not overlap. (Remark:

The dimensions are not at scale.)

Here, the index ’r’ was chosen to indicate the refractive na-
ture of the delay due to the glass plate. Behind grating G, the
pulses experience a further time delay, now due to the opti-
cal detour caused by diffraction. This delay, denoted td varies
with the diffraction order. In the +1st order, the pulse in the
lower half is delayed with respect to the pulse in the upper
half. If we assume a lateral offset between the two pulses of
(N/2)p the detour is (N/2)λ. Taking into account the diffrac-
tion order m, we can write for the delay due to diffraction:

td = −m
(

N
2

)
λ

c
(2)

The minus sign reflects the fact that in the +1st order the time
delays between lower and upper pulse have opposite signs.
The total time delay between the lower and the upper pulse
is:

t = tr + td (3)

For m=1, we obtain:

∆nd = (N/2)
λ

c
(4)

Hence, the delay due to the glass plate and the delay due to
the grating diffraction compensate for the central wavelength
if the thickness is

d =
Nλ

2∆n
(5)

For example, with λ=500 nm, N=100 and ∆n ≈0.5, one obtains
d ≈50 µm.

In the -1st order, the delay between upper and lower pulse
is negative, i.e. the spatial distance between the two pulses is

further increased. It is obvious, that the contrast of the inter-
ference fringes depends on the time delays. For optimum con-
trast, the delay between the upper and the lower pulse should
be zero which leads to the condition expressed by Eq. (4). It
may be noted at this point, that the experiment setup yields
good contrast only if the incoming wave is well collimated. A
deviation from a plane wavefront results in a temporal blur-
ring across the aperture and therefore also in a noticeable re-
duction of the fringe contrast.

As explained in the previous section, the difference between
the +1st and the –1st order can be understood from the dif-
ferences of the optical paths. Instead of considering the tempo-
ral signal S(t), however, we may also view this experiment as
processing the signal spectrum S̃(νt). This attitude emphasises
the quite different dispersion impact of re-fraction and dif-
fraction. By comparison: we are used to understanding light
in spectroscopy by the power spectrum

∣∣S̃(νt)
∣∣2. This view does

not suffice for understanding the Talbot bands. Here, it is the
phase of the signal spectrum that is manipulated.

This remainder of this article is organised as follows: after the
review of the Talbot band experiment in this section , we will
present a theory to describe the effect in terms of diffraction
and refraction (Section 2). A detailed mathematical analysis
will follow in Section 3. In Section 4, we will show two demon-
stration experiments that constitute an extension of the classi-
cal Talbot band experiment. In our conclusion, we will discuss
particularly the potential use of the Talbot band experiment
for temporal processing of ultrashort optical pulses.

2 T A L B O T B A N D S A S A R E -
F R A C T I V E - D I F F R A C T I V E P H E -
N O M E N O N

White light described by its temporal field S(t) may be consid-
ered to consist of short pulses, a single pulse denoted by S0(t).
The spectrum S̃(ν) is given as its Fourier transform with ν as
the temporal frequency coordinate:

S̃(ν) =
∫

S(t) exp(2πiνt)dt (6)

Spectral width ∆ν and pulse duration ∆t are related. As an
example, we consider a Gaussian pulse, denoted as SG(t):

SG(t) = exp
[
−(t/∆t)2

]
exp(−2πiν0t) (7)

with a Fourier spectrum

S̃G(ν) =
√

π∆t exp
[
−(π∆t(ν − ν0))2

]
(8)

and a time-bandwidth product:

∆t∆ν = 1/π (9)

where ∆t and ∆ν are the 1/e-widths of the signal and the spec-
trum, respectively. With the relation |∆ν| = c|∆λ|

/
λ2

0, a spec-
tral width ∆λ ≈50 nm around a centre wavelength λ0=550
nm corresponds to pulse duration ∆t ≈6 fs. Such short pulses
were first demonstrated in [6] and pulses of typically less than
30 fs are nowadays generated by commercial laser systems.
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When a pulse passes through an optical element (a phase plate
or a grating) or a whole system, it experiences dispersion, i.e.,
the occurring time delay varies with frequency. In the case of
linear devices we can use the concept of the temporal transfer
function, here denoted by H̃(ν) to establish the relationship
between input and output spectra:

S̃out(ν) = S̃in(ν)H̃(ν) (10)

Assuming no absorption and neglecting polarisation effects,
we can write for the transfer function H̃(ν):

H̃(ν) = exp [2πit(ν)ν] (11)

In the qualitative explanation of Section 1, the time delay was
considered to be constant. In order to take dispersion into ac-
count, we write for the refractive time delay due to the phase
plate, tr(ν), as a function of the frequency:

tr(ν) =
∆n(ν)d

c
(12)

For a glass plate with normal (anomalous) dispersion, the in-
dex of refraction increases (decreases) with ν, i.e., dn/dν > 0
(dn/dν < 0) and hence

dtr(ν)/dν

{
< 0 anomalous
> 0 normal

. (13)

And for the time delay td(ν) due the grating it is

td(ν) = −m
(

N
2

)
c
ν

(14)

from which we obtain:

dtd(ν)
dν

= m
(

N
2

)
c

ν2 (15)

Notice, that for complementary orders, for example, the +1st
and -1st order, we have opposite dispersive behaviour:

dtd(ν)
dν

∣∣∣∣
m=1

= − dtd(ν)
dν

∣∣∣∣
m=−1

(16)

Although, of course, dispersion is due to diffraction in both
cases, one may use the combination of two complementary
orders for compensation purposes. This is widely done for
achromatization of all-diffractive systems [7] and for pulse
shaping devices using double diffraction [8, 9]. The point of
view of considering the Talbot bands as a combination of re-
fraction and diffraction was discussed in detail in Ref. [3]. In
particular, various cases of combining different element have
been discussed. We now want to return to the case of the Tal-
bot bands and see how the combination of different refractive
and diffractive dispersion characteristics can be exploited. In
the next section, we calculate the intensity of the Talbot bands.

3 W A V E - O P T I C A L A N A L Y S I S

We calculate the far-field pattern dependent on the observa-
tion angle α. The temporal field travelling along that direction
consists of a sequence of pulses (see Figure 4):

S(t, α) =
N/2−1

∑
m=0

S0(t − mt)+
N

∑
m=N/2

S0(t − mt + tr) (17)

FIG. 4 Explanation of the theoretical calculation for the classical Talbot band exper-

iment. Due to the opposite signs of the refractive delay, τr , and the diffractive de-

lay, τd = (N/2)p sin α/c, corresponding pulses lie approximately on the same line

t = const behind the grating.

Here, S0(t) denotes an individual pulse, t = λ/c is the delay
between neighbouring slits of the diffraction grating. Fringes
can be observed if tr ≈ (N/2)p sin α/c. In the far-field, we
observe the intensity I(α). We can write:

I(α) =
∫
(t)

|S(t, α)|2 dt =
∫

(ν)

∣∣S̃(ν, α)
∣∣2dν

=
∫

(ν)

∣∣S̃0(ν)
∣∣2 ∣∣H̃(ν, α)

∣∣2 dν (18)

S̃0(ν) is the spectrum of the individual pulse according to
Eq. (6). H̃(ν, α) is the transfer function of the optical setup
along the direction of observation. The left side of this equa-
tion states that the intensity is given by integrating over the
intensities in the pulse sequence. The right side follows from
Eq. (10) and Parseval’s theorem. We can further split up the
transfer function into two terms:

H̃(ν, α) =
N/2−1

∑
m=0

exp (2πiνmt)+

N/2−1
∑

m=0
exp

[
2πiν

(
(m + N

2 )t − tr

)]
= {1 + exp [2πiν(Nt/2 − tr)]} ·

N/2−1
∑

m=0
exp (2πiνmt)

= F̃(ν, α) · G̃(ν, α)

(19)

and obtain the following expression for the intensity (by drop-
ping a factor of 2):

I(α) =
∫ ∣∣S̃0(ν)

∣∣2 ∣∣F̃(ν, α)
∣∣2 ∣∣G̃(ν, α)

∣∣2 dν (20)

The first term in the integral,
∣∣S̃0(ν)

∣∣2 is the power spectrum
of the optical pulse. The third term,
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∣∣G̃(ν)
∣∣2 =

∣∣∣∣∣N/2−1

∑
m=0

exp (2πimνt)

∣∣∣∣∣
2

=
sin2 (π(N/2)νt)

sin2 (πνt)
, (21)

is the typical term that one obtains for multiple beam interfer-
ence and describes the different diffraction orders. The modu-
lation of the diffraction orders, i.e., the structure of the Talbot
bands, is given by the second term,

∣∣F̃(ν)
∣∣2. For the classical

Talbot band experiment, one obtains:

∣∣F̃(ν)
∣∣2 = 2 [1 + cos (2πφ)] (22)

with

φ = ν

(
N
2

t − tr

)
=

N
2

νp sin α/c − ∆ndν/c (23)

The sinusoidal modulation is typical for two-beam interfer-
ometers. Its occurrence is not surprising here, since the incom-
ing beam is subdivided into two beamlets by the glass plate.
Since both share the same aperture, we may call the conven-
tional Talbot band setup an “in-line two-beam interferome-
ter.” This terminology is introduced here, since later we want
to extend the experiment to a multi-beam setup. The phase
term φ consists of two terms. The first term varies with the
observation angle α:

dφ

dα
=

N
2
· ν

c
p cos α (24)

The inverse term, 1/ (dφ/dα) is the period of the fringes, here
denoted as pT :

pT =
c/ν

(N/2)p cos α
=

λ

(W/2) cos α
(25)

with W = Np the beam aperture. For small angles we can
approximate pT ≈ 2λ/W. Obviously the modulation period
of the Talbot bands increases the wavelength as confirmed by
Figure 3. The phase term φ contains a second term, ∆ndν/c.
This term is independent of α, however, it also varies with the
frequency or the wavelength, respectively. The fringe contrast
is highest where the cosine function is near the value 1, i.e., for
φ ≈0 and hence around the angle

sin α ≈ ∆nd
W/2

(26)

Note that this is the same condition like Eq. (4). Figure5 shows
a measured intensity plot for the band structure of Figure 3.

FIG. 5 Measured intensity distribution in the +1st order of Figure 2.

4 E X T E N S I O N O F T H E T A L B O T
B A N D E X P E R I M E T

The mathematical description of the previous section suggests
to modify the classical Talbot band experiment so that more
than two interfering beams are generated. Here we discuss
the extension of the experiment in different ways. If, instead
of a simple glass plate a structured phase element is inserted
into the aperture, we can achieve a more complex temporal
modulation across the incoming beam. We demonstrate this
for two cases denoted as experiments 2 and 3.

First, we generalise our theory. We assume that instead of a
simple glass plate, a structured phase element is used. Sup-
pose it consists of K discrete steps of equal width w = Mp,
i.e., . MK = N. Then we can re-write Eq. (17) as

S(t, α) =
K−1

∑
k=0

M−1

∑
m=0

S0

[
t − (m + kM) t + t(k)

r

]
(27)

t(k)
r is the time delay generated by the k-th interval. For the

classical Talbot band experiment, it is K = 2, M = N/2 and
t(k)
r = ktr. With Eq. (17), we can easily find:

H̃(ν, α) =
K−1
∑

k=0

M−1
∑

m=0
exp

[
2πiν

(
(m + kM) t − t(k)

r

)]
=

K−1
∑

k=0
exp

[
2πiν

(
kMt − t(k)

r

)]
·

M−1
∑

m=0
exp (2πimνt)

= F̃(ν, α) · G̃(ν, α)

(28)

In experiment 2, the phase object consisted of a linear staircase
as shown in Figure 6. Width and height of the steps have to
be chosen appropriately: since the aperture is subdivided into
more and narrower steps, the step height has to be reduced.
The condition is derived from ∆nd′ = w sin α from which fol-
lows (analog to Eq. (4)):

d′ = Mλ/∆n = (W/K)λ/∆n = d/K (29)
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FIG. 6 Experiment 2. Calculation of the step height and width for a staircase object.

FIG. 7 Experiment 2. Observed fringe pattern for the staircase object. Here, K=5.

w ≈3mm and d=100 µm.

The intensity distribution of the fringe pattern can be calcu-
lated with the theory presented earlier. The linear staircase
generates K beamlets with multiple delays: t(k)

r = kτr. We ob-
tain:

S(t, α) =
K−1

∑
k=0

M−1

∑
m=0

S0 [t − (m + kM) t + ktr] (30)

The intensity of the modulation varies with:

∣∣F̃(ν, α)
∣∣2 =

∣∣∣∣∣K−1

∑
k=0

exp [2πikν (Mτ − tr)]

∣∣∣∣∣
2

=
sin2 (πKφ)
sin2 (πφ)

(31)

For the linear staircase, we thus obtain a modulation of the
Talbot bands as it is typical for a multiple beam interferome-
ter with K beams. Thus the peaks appear sharper than for the
classical Talbot band experiment (see Figure 7).

In experiment 3, a simple binary phase grating is used (Fig-
ure 8). The period 2w of this element is rather coarse, so that
diffraction can be neglected. Spatially, the structure subdi-
vides the incoming beam into K beamlets as in experiment
2 with a similar reduction of the step height. Temporally,
however, only a single time delay occurs as in experiment 1.
Hence that pattern is also sinusoidal. However, the smaller
step height results in a shorter time delay than in experiment
1. Therefore in the ν-domain a fringe period is observed whose
period is increased (Figure 9). In the angular domain, the pe-
riod is p′T = Kλ/W. It should be noted, that in the case of
an object with lateral symmetry, one observes a fringe pattern

also in the -1st order since pairs of pulses also form for direc-
tion −α.

FIG. 8 Experiment 3 with coarse binary grating as object. Here, w=2000µm and

d ≈20µm.

FIG. 9 Experiment 3. Fringe pattern with sinusoidal modulation.

As a final remark we would like to add: we have so far only
considered objects with a piece-wise constant phase structure.
However, this is not a necessary restriction. Special combina-
tions of refractive and diffractive elements might also be use-
ful, for example, a lens combined with a Fresnel zone plate.

5 C O N C L U S I O N A N D O U T L O O K

So far, the Talbot band experiment has been mostly considered
as a curiosity and as an example of the role of temporal aspects
in optical interferometry. Here, we have considered a differ-
ent point of view: the Talbot band experiment suggests that
a combination of two different kinds of dispersion, diffractive
and refractive, yields surprising results. That may be inspiring
for the so-called “dispersion management” which is an impor-
tant issue for temporal signal processing at ultra high speed.
Yet more general effects might emerge if also a third tool, re-
flective dispersion, is used in a mixed fashion. That idea be-
comes clear by considering in Figure10, a reflective implemen-
tation of the classical Talbot band experiment of Fig. 1. Here, a
micro machined mirror causes the delay between the left and
the right half of the input aperture.
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FIG. 10 Reflective optical setup for realisation of Talbot bands.

The use of micromachined optical elements with depths rang-
ing between 10 and 1000 µm allows one to implement optical
delays from the fs- up to the ps-range. This may be used to im-
plement an optical pulse shaper based on the Talbot band ex-
periment beside well-known setups such as the Treacy inter-
ferometer [8] and the widely used far-field grating interferom-
eter, GI [9]. Far-field GI and the Talbot band setup are shown
in a combined drawing in Figure 11. In the GI, a first grating,
G1, forms the spectrum in the filter plane F (denoted by the co-
ordinate ν). A mask is placed in this plane as a spectral filter. A
second grating, G2, recombines the different wavelength com-
ponents. In the Talbot experiment, the phase element is posi-
tioned in the Fourier-conjugate plane near the first grating. In
comparison one may say that in the GI-setup filtering is per-
formed in the frequency domain, in the Talbot band setup we
influence directly the temporal shape of the signal. A point-
like filter, for example, in the ν-domain corresponds to a pris-
matic structure (the linear staircase) in the temporal domain.

FIG. 11 Optical filtering of fs-pulses. In the conventional grating interferometer setup

according to Ref. [9], a mask is used in the filter plane F. Alternatively, a Talbot band

setup with a micro machined phase element before grating G1 can be used.
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